Chapter 5

Discussion

We have presented an overview of the theory and the measurements for both the TR
method and the SCL method for dielectric and magnetic materials. In addition, relevant
uncertainty analyses have been developed. Equations were presented for TR and SCL
measurements that are reference plane invariant. These equations can be solved either by
iteration or explicitly.

There are two common problems in the data reduction techniques for transmission
line measurements. These problems are the existence of higher mode resonances and the
problem that for low- loss materials the solution of the equations become ill-conditioned at
integral multiples of one-half wavelength in the sample. The one-half wavelength instability
occurs because the phase of S); contains a large uncertainty when [Sy;| — 0 and also
because the equations in this limit yield only the phase velocity. For dielectric and magnetic
measurements, the uncertainty is a function of the sample length. In general for low-
loss materials, samples long in relation to wavelength give more accurate results, however
overmodes may be produced. Thus for broadband measurements of low-loss low-dielectric
materials, it is preferable to use longer samples. However, with lossy materials, very long
samples result in only front face reflection information and the results have a relatively large
uncertainty. For relatively lossy materials, sample lengths on the order of one attenuation
length are optimum. Longer samples allow the propagation of higher order modes, and
therefore higher mode responses will be contained in measured scattering data. However,
the uncertainty in the spectrum between over-moded resonance regions will be lower for
longer samples than for electrically short samples.

For thicker samples the problem is more complicated and a knowledge of the uncertainty
analysis is important for interpreting the results. For permeability measurements in a short-
circuit line the numerical reduction procedure becomes divergent when there is an integral
multiple of one-half wavelength in the sample. For TR and SCL measurements we can
summarize our conclusions as follows
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o For SCL measurements, length of samples should be such that |S;| > —20 dB.
o The one-sample techniques appear to allow a better reduction of the scattering data.

e The optimized solution and the reference plane invariant solution appear to be the
most accurate and stable methods. However, local minima have to be avoided.

o The short-circuit line is a simple way to obtain permittivity and permeability simul-
taneously. For low-loss materials it does suffer from numerical instabilities.

e In SCL permittivity measurements, minimum uncertainty is obtained when the sam-
ple is A/4 from the short. This is only true for electrically thin samples.

¢ Minimum uncertainty magnetic measurements can be made for single frequency mea-
surements by taking one measurement at a maximum electric field position and an-
other measurement at a maximum magnetic field position.

The various TR and SCL techniques are compared in table 5.1 and 5.2.
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Table 5.1: Dielectric and magnetic TR measurement techniques compared.

i

Technique Applicability | Strong Points Weak Points
Full 2-port, one sampie Dielectric Requires one sampie —
Full 2-port, one sample Magnetic Requires one sample Unstable at nAm/2

NRW Technique Magnetic Simple Solution Unstable at nAm /2
Two-Position Technique Magnetic EEa— Doesn’t exist for TR techniques
Two sample technique Magnetic Stable over all frequencies Requires two samples
Multi-point techniques Magnetic Very stable non-global minima

Table 5.2: Dielectric and magnetic SCL measurement techniques compared.

Technique Applicability | Strong Points Weak Points
One-position Technique Dielectric Stable -_—
Two-Position Technique Magnetic Requires only one sample Unstable at nAm /2
Two sample technique Magnetic Stable over all frequencies Requires two samples
Multi- point techniques Magnetic Very stable Alternative minima

on
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Chapter 7

Appendices

Appendix A

Magnetism in Matter

A.1 Description of Magnetic Phenomena

The origin of magnetism is related to the electrostatic coulomb repulsion between electrons
and is intimately related to the spin and orbital angular momentum of electrons, nuclei,
and other charged particles. Stern and Gerlach proved the existence of discrete magnetic
moments by observing the deflection of silver atoms passing through a spatially varying
magnetic field. The quantum mechanical relation between magnetic moment and angular
momentum of an electron is my = —gzh J, where g is the Lande g-factor = 2.002319114,

£ = 9.2742 x 107 (J —m? /W) is the Bohr magneton, J is the total quantum mechanical

angular momentum, e is the electronic charge, & is Planck’s constant, and m is the mass.
The gyromagnetic ratio is defined as

magnetic dipole moment e

Y = ; =95
angular momentum

(A.1)

2m

There is a diversity of magnetic phenomena due to the existence of various coupling
schemes of angular momenta quanta. Types of magnetism include paramagnetism, which
is due to spin and angular momentum of individual electrons, diamagnetism which has its
origin in the orbital angular momentum of the electron, and ferromagnetism originates from
the formation of domains with each domain containing a large number of aligned spins.

A.1.1 Field Description of Electromagnetic Phenomena

It has been found that dielectric and magnetic phenomena are adequately described by a
set of field vectors. These vectors represent t the electric field, £ and magnetic field, H, the
displacement field, D, the induction field. B. the polarization field, P, and magnetization
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field M. Maxwell’s equations define the spatial and temporal evolution of these field vectors,
Constitutive relations between field quantities and material properties are necessary tq
desc_x:ibe_elelctromagnetic phenomena. The displacement field is related to the electric fielq
by D =¢ -E, where € is the permittivity tensor. For linear materials the permittivity doeg
not depend on the field strength. The permittivity is a measure of electronic, ionic, and
dipolar polarization. The permittivity is frequency dependent with dipolar polarization
occurring below 10'°® Hz, ionic polarization below 10'® Hz, and electronic polarization
above 1013 Hz. The permittivity of free space is €o = 8.85419 F/m. The magnetic field
is related to the induction field by B =i -H, where [t is the permeability tensor. The
permeability of a material is a measure of the degree to which it allows the penetration by
an external magnetic field. The permeability of free space is po = 47 X 10~"H/m. The
permittivity and permeability of free space are related to the speed of light in vacuum
c =1/ /épo = 2.99792458 x 108m/sec. The electric field may contain sources, so that

V . E = p, where p is the free charge density. Induction fields are sourceless, expressed
mathematically by V - B = 0. For a charge e moving with velocity ¥ through and electric
field E and magnetic field B, the Lorentz force on the charge is F' = e[E + (v x E)]

The electronic properties of isotropic substances can be described macroscopically by
scalar material properties in terms of the relative complex permittivity and permeability,

€g and pg:

e =¢ — je' = (€g — je€r)€o = €Rco (A.2)

p=p' —ju" = (g = JrR)Ho = HRHo - (A3)
The electric and magnetic fields are modified by the presence of matter in the space-
time region in and around the body. The presence of magnetism in matter is described

by the magnetization vector M which quantifies the number of magnetic dipoles per unit
volume. The magnetic field H is related to the induction and magnetic moment vectors by

fi=LB-M, (A4)
Ho
where pq is the permeability of free space. The magnetic field is also related to the mag-
netization field, M by a constitutive relationship in terms of the susceptibility xm. For a
linear medium the relation is

-

M= x\xnH . (A.3)
The permeability and susceptibility are related through eqs (A.4) and (A.5)

= #0(1 + Xm) . (A6)
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gimilarly, the electric field is related to the displacement field ([5) and the polarization field

(P) by L .
D=e¢E+P=ck. (A7)

It is useful to define a constitutive relation between polarization and electric fields using

the electric susceptibility (xi)
P = 6Ox/elEla (AS)

and therefore

€ = eo(1 + Xxet) - (A.9)

A.1.2 Types of Magnetism
Magnetic materials are classified by the values of permeability.
¢ diamagnetic p’ < po,
e paramagnetic ' > po,
e ferromagnetic pu' >> po.
The susceptibilities of the various classes of magnetic phenomena are
e diamagnetic xm < 0,
e paramagnetic xm > 0,
e ferromagnetic x,, >> 0.

Due to the complicated quantum-mechanical origin of magnetism with various competing
effects. it is not always possible to classify a material into one of the categories. For example,
a ferrite may be diamagnetic in X-band and paramagnetic at lower frequencies.

A.2 Paramagnetism

Paramagnetism arises from the alignment of individual spins and angular momentum of
particles in external magnetic fields. Paramagnetism is an interaction between the tendency
{or the electron spins to be aligned with the field on the one hand and thermal agitation
which tends to randomize the spins ot the other hand. Paramagn=tic phenomena in in-
sulators is temperature dependent and follows Curie’s law. In metals paramagnetism is
strongly influenced by the conduction electrons and has minimal temperature dependence.
Paramagnetic materials are primarily the rare earth and transition ions with incomplete
atomic shells. There are two types of paramagnetism
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e Spin paramagnetism,
o Orbital paramagnetism.

Spin paramagnetism is due to alignment of electron spins and is only slightly temper 1
ture dependent. Spin paramagnetism or Pauli paramagnetism occurs in metals. Orbit:.
paramagnetism, caused by alignment of orbital magnetic moments, is strongly temperaty,
dependent. This type of paramagnetism occurs in insulators. ¢4

A.2.1 Diamagnetism

Diamagnetism is the magnetic effect that is due to orbital angular momentum effects. [g4,. '_
mor diamagnetism occurs in filled-shell insulators. The origin of diamagnetism in materialg §
is the orbital angular momentum of the electrons in applied fields. Diamagnetic materials §
have a negative susceptibility and generally it is not sensitive to temperature variationg
at least for nonsuperconducting materials. Diamagnetic materials do not have a strong 4

magnetic response.

A.2.2 Ferromagnetism

In ferromagnetic materials, spin coupling allows regions of aligned spins to be formed, called §
domains. In each domain the spins are more or less aligned. However, adjacent domains ag {
a whole may be arranged in a random fashion. As a magnetic field is applied the domains J
more or less align with the field. ;

The difference between paramagnetism and ferromagnetism is that in the case of the -
former, spins interact minimally, whereas in ferromagnetism the spins strongly interact 4
to cause alignment. Ferromagnetic materials can exist in a nonmagnetized state since §
magnetic energy is at a minimum when the domains are randomly situated or in a state of §
maximum entropy. This random arrangement of domains is possible because it is found ina §
detailed analysis that it is energetically more favorable for many ferromagnetic materials to §
be magnetically neutral. The boundaries between the oriented spin regions, called domain
walls require energy for formation. There is a detailed balance between the magnetic
field energy caused by alignment of spins in a domain on the one hand and the energy §
required for domain wall formation on the other hand. Dipolar encrgy is decreased by wall §
formation, but exchange energy is increased by the Pauli exclusion principle. Domain walls @
are normally of 0.01 - 10 g m thick and can deform under applied fields or mechanical §
stresses. |

As the temperature increases in a ferromagnetic material the kinetic energy can over- 4
whelm the magnetic energy and the preferential alignment of spins can be broken. The
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Figure A.1: Lattice structure of autiferromagnetic and ferrite materials. In one lattice the
spins are up and in the other lattice the spins are down.

temperature where the kinetic thermal cnergy becomes predominant over the magnetic
energy is called the Curie temperature.

If a ferromagnetic material is immersed in an increasing external field its magnetization
creases.  However as the external field is removed the magnetization curve does not
necessarily follow the reverse curve back to the initial state: rather a slightly different curve
is followed.

This phenomenon is called hysteresis and is caused by the irreversible movement of the
domain walls. The irreversibility is caused by defects in the domain wall lattice. Thus, fer-
romagnetic behavior depends on the past history of the sample and is not totally reversible.
Materials with large hysteresis effects are called hard and materials with small hysteresis
effects are called soft.

A.2.3 Ferrites and Antiferromagnetism

Antiferromagnetism 1s a property possessed by many transition elements and some metals.
In these materials the atoms form an ordered array with alternating spin moments so as
to give zero for the net magnetic moment of the material. Antiferromagnetic materials are
composed of two interpenctrating lattices. Fach lattice has all spins more or less aligned.
but the lattices as a whole are inverse structures as indicated in figure A.1.
Antiferromagnetic materials do not generally support permanent magnetization and do
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not have a strong magnetic response to an applied field. Ferrite materials also consist, of tw
overlapping lattices whose spins are oppositely directed, but with a larger magnetic momen(:
in one lattice than the other. Since spin angular momentum is not canceled totally betweey
the lattices these materials have a magnetic response to an applied field. The Magnetj,
response increases with temperature. Antiferromagnetic materials are paramagnetic above
the Neel temperature.

Most ferrites are mixtures of oxides such as magnetite of the generic form XO.Fe,0
where X is a divalent metallic ion such as Fe (magnetite), N7 (nickel ferrite), Cu (COPpei
ferrite), Mg (manganese ferrite), Co (cobalt ferrite), or L (lithium ferrite). There ap
also many other spinel class ferrites that contain additional components, for example, ziy,
and aluminum. The spinels have either a normal or an inverse lattice structure formeq
by controlled quenching. Many ferrites have few free electrons and therefore are usefy} i,
microwave frequency components since the absence of free electrons prevents eddy-currep;
losses that occur in conducting materials at high frequencies.

A.3 Equations of Motion for the Magnetization Vec-

tor

A.3.1 The Torque Equation

In this section we will develop macroscopic equations of motion that underlie the coupling
of angular momentum and magnetic fields. As a model [22], we consider a spinning particle
exhibiting angular momentum J. immersed in a magnetic field. The presence of spin induces
a magnetic moment m = 79‘]—..‘ where the 4, is the gyromagnetic ratio. The magnetic field
will interact with the angular momentum by inducing a torque T

dJ

—_— A.10
dt ( )

7=

We define a magnetic moment, 17 = 7,J. The equation of motion of the spin system in an

applied field B is

Fomx B, | (A.11)
or l_.
id'-;l — ., (7 x B) . (A.12)

If we average over a significant number of these particles we obtain a macroscopic magnetic
moment




|
1
|
|

M = Nr | (A.13)

where N = number of magnetic moments. We obtain the following equation of motion for
the magnetization

dM

dt
where A is a constant and 7 is a characteristic relaxation time of the system. As we will
see in the next section it is possible to obtain a tensorial constitutive relation between H
and B by use of eq (A.14) for a magnetic moment in an external magnetic field. This
constitutive relationship will define the susceptibility and permeability tensors.

In real materials there always exists some dissipation due to damping. Dissipation
is caused by such effects as magnetic dipole radiation and magneto-elastic coupling with
lattice phonons. The effect of a dissipation torque can be modelled as a source term added
to eq (A.14). One approximation for the dissipation torque yields the Landau equation of
motion

. a4 A
= you(M x H) + =, (A.14)

—

dM v, 7 HYgQ = Y 3 .

— = Mx H)+ —=—[Mx (M x H)], Al

= KM x )+ ] (M x (M x H)] , (A.15)
damping

where « is a parameter that determines the damping. This can be reduced for small
damping to
dM ~ a 5 dM

aMm _ Mx H)+ — (M x 22 A.16
7 1y, (M x H) M[ X (A.16)

This equation is due to Gilbert [23] and neglects terms nonlinear in «. The damping
introduces a nonlinearity into the problem.

A.3.2 Magnetized Magnetic Material: The Polder Matrix

The constitutive relation between the induction field and the magnetic field in ferrite ma-
terials is represented by the Polder matrix. In order to derive an expression for the Polder
permeability tensor we use as a model a magnetic dipole of moment m, [22,24], in the
presence of an external magnetic field. H(t). The net torque experienced by the dipole of
magnetic moment my Is

T=—pumyH(t)sind , (A1T)

where 6 is the angle between the dipole axis and field. In the presence of a z-axis magnetic
field the dipole will precess with a characteristic Larmor frequency of wy = |v,|H, where
v, 1s the gyromagnetic ratio. There are also non-conservative frictional forces present to
damp the rotation.

93




We will assume that in the presence of a time independent d.c. magnetic field i, th
2 direction (H,), the magnetization is essentially at_'the saturate_(‘l value M,. We fllrthe
assume a combined d.c. field and an alternating field h, we obtain H(t) = H.&+h eXp(jwter
where €3 1s the unit vector in the z direction. The magnetic moment can be approXimate)(i
by M = M,é&; + mexp(jwt), where M. is time independent. When we substitute these int
eq (A.16) we obtain a system of equations 0

Juwrh = pygM,(€3 X h) + (wo + jwa)(€s X 1) + i x hexp (jwt) (A.18)

where wo = —7,H, [25] and we assume |M| = M, =~ M,. In the analysis we will negle
the last term in eq (A.18). If

3
=1
. 3
h=>3 hié:, , (A.20)
=1
then by substitution into eq (A.18)
jwnlr = _(“’YO +j“)a)my - NA/gA/Ishy s (AQl)
Jwm, = Yo Mhy + (wo + Jwa)my , (A.22)
jwm, =0. (A.23)
Therefore
w M ' M :
m, = _(wg + _]‘Lua)#'Yg As hr . ]W'/i')lg s hy ’ (A24)
(wo + Jwa)? — w? (wo + jwar)? — w?
YRITR 2917 ) ] M,
m, = —— p, - Lot dwaliag My, (A.29)

(G0t jwal =t (gt jwa)? =t
The system of eqs (A.24) through (A.23) for the linear susceptibility relation between
M and H can be expressed as

x —Jrk 0 he My
pl Jr X 0 hy =1 my | s (A.26)
0 0 0 h. m.
where
(wo + jwa)? —w?
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and o
N = LM i (A.28)

(u.‘o + ju)Q)2 - uu'?

and
war = =M . (A.29)

We can separate out the real and imaginary components to yield

wiywol(ws — w?) + a’w?]

= — A.30
VT @ o (L4 el + dwtaga? (A.30)
o u,‘;\[w‘(l[w‘é + u«"z(l + ()2)] A 31

T T = A+ o + dwtedal (A-31)

) —wyefwd — w31+ a?)]

K= 2 2 : 213]2 2 ,2,2 " (Agz)
(W — w1 4+ )] +Htwfa
')u; 2 YW
K = B . (A.33)

[wd — w2 (1 +a?)]2 + fwlwia?
Note that we have assumed that the magnetization is at the saturated value M. That 1s

all of the magnetic moments are assumed to be aligned with the external field. This is not
always a good assumption. For this special case the Polder matrix is

L v+1 —jn 0
f= p(] + \) = p Jk v+ 10 : (A.34)
0 0 |

We see that in the limit as H. — 0 and M. — 0 the off-diagonal components of the per-
meability tensor vanish and the diagonal components reduce to the isotropic permeability,

fi=p |. where [ is the identity matrix.



Appendix B

Fields in Waveguides

B.1 Summary of Maxwell’s Equations

Maxwell’s equations are

—

VxE=—juB,
Vx H=J+jwD,
V-B:p,

V.-B=0.

The boundary conditions at material interfaces are

ix(Ey—E) =0,
ITI:X([‘?Q—['_I.I)ZJ;,

77(Dz~51):Q

i (By— B) =0,

where J; is the surface current density and Q is the surface charge density.
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B.2 Modes

B.2.1 TE Modes

The longitudinal coordinate is assumed to be z. If the H. mode exists, it is the generator
of the TE mode [22]. The T E modes satisfy the boundary value problem,

(V3 + kY Ho 1) =0, (B.9)
where k2 = k? + 4?2 are real, positive eigenvalues. The boundary conditions are
- (VH(:(TE)))Ion conductor — 0. (BlO)

where 7 is the normal vector. Also

Ez(TE) =0. (B.ll)
The other field components are then
Hyerey = *%VTHZ , (B.12)
Ergrey = —Zre(Z % Hrre)) | (B.13)
B.2.2 TM Modes
For the case of TM waves
(Vi + kD Euran =0, (B.14)

where k? = k? + 47 are real, positive eigenvalues determined by boundary information on
the waveguide.
The boundary conditions are

l?(:('l‘t\l))|<m conductor — 0, (BIS)
H.ray=0. (B.16)
The other field components are

2 7 7
Eriran = _FVTE: ; (B.17)

. 1 -
Hyoray = 7——(: x Lpran) - (B.13)

T M

NN (B.19)




B.2.3 TEM Modes
The propagation of TEM modes are possible in addition to the TE and TM mode :
n

coaxial cable . The cutoff wave numbers for higher order T'M waves in coaxial |ip
given by the roots of: € are

Na(kRi)  NakRa) _
Jn(chl) Jn(ch4) - ' (820)

[22], and for TE waves in coaxial line by

Ni(keRy) No(heRe) _
Ti(keRy) JukRa) (Bay)

where J and N denote the Bessel functions of the first and second kind and Ry and R, are
the inner and outer radii respectively. The cutoff wavelengths are given approximately by:
2
)\CQE(R“_RI) g=1,2,3,.... (B.22)
For example the TM mode cutoff frequency in 7 mm coaxial line for eq (B.22) is approxi.
mately 34 GHz.




Appendix C

Gap Correction

C.1 Frequency-Dependent Gap Correction

C.1.1 Waveguide

We consider a sample in a rectangular waveguide of dimensions a x b with a small gap (b-
d). The dielectric constant in the gap is eg, and of sample €g,. The measured or observed
value 1s €p,.

A transverse resonance condition yields [40]:

tan(ki.d) + X tan(ky(b—d)) =0, (C.1)
where w
klc = Clob V €Rs — €Ro » (CQ)
w
koo = \/€Rg — €Ro » C.3
2 Clab = R ( )
and

X =LV "R (C.4)
€Rg VERs — €Ro
For our case of waveguide (b — d) =~ 2.54 x 107> m and b = 0.01016 m. Equation (C.1)
must be solved by iteration, but for low frequencies and low dielectric constants we can
obtain a approximate solution. This equation reduces to Westphal's equation, [34] in the
appropriate low frequency limit.
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o

Figure C.1: Sample in waveguide with air gap.

N\

C.1.2 Coaxial Line

For coaxial line the matching of transverse impedance yields the resonance condition {40}:

ct(zy, ) = Xct(zy,z3) , (C.3)
where
T =k Ry, ‘ (C.6)
Ty = k1R, (C.1)
z} = ko Ry (C8)
Ty = ko R (C9)

and X, k;., and K, are given in the previous section. The functions ct are defined as

Ji(z)No(y) — Ny(y)Jo() (C.IO)
Jo(z)No(y) — No(z)Jo(y) ’

where Jo, Ji, No, and N, are the Bessel functions of zero and first order of the first and

second kind respectively.

Ct(l‘, y) =
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Frequency-Independent Approaches

C.2

researchers have approached the gap problem by representing the sample with air

. M s

\arlzz 2 layered capacitor (33,34,41). This approach assumes that the gaps between trans-
ggPsion line and sample are effectively modeled by a set of capacitors in series. Champlin
nus

m approa,ched the problem using as a starting point the perturbation formula developed
b Schwinger (42]. By substituting into the perturbation formula approximations to the
”yld Jistribution in the various regions, they obtain an estimate for the effective permit-
h‘e't Their answer turns out to be fully equivalent to the capacitor model of Westphal
“311] ybhamplin showed that Bussey’s theory [33] is the first two terms in an expansion of
i\'Ves‘tph&l [34] and Champlin’s models.

The capacitor model is frequency independent and thus is strictly valid only at lower
frequencies and dc. We expect the capacitor model to break down at higher frequencies
because the wavelength decreases with increasing frequency to a point where multiple
scattering dominates. In order to account for multiple scattering, it is necessary to develop

» theory that is frequency dependent.

c.2.1 Coaxial Capacitor Model for Dielectric Materials

Consider a capacitor consisting of layers of dielectric and layers of air in a coaxial line
[43,44]. The dimensions are shown in figure C.2.
We treat the system as capacitors in series, so

Lo (C.12)

Cn 1 G2 G
We know that for a coaxial line the electric field distribution is given by

E 4 C.13
T—W~, ( )

and the voltage between the conductors is given by

1
m

b ,
Vo= —/ E(r)dr . (C.14)
The capacitance of a coaxial line of length L is given by
2mel
= T (C.15)
In £
thus, for a system of three capacitors in series we have
InB  Inf2 |nf |pf
B Ry Ry R (C.16)
1

/
€ ¢ €’ €]
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Figure C.2: A coaxial sample in holder with air gaps near conductors with diameters
denoted by D,.

where ¢/, ¢/ are the corrected and measured values of the real part of the permittivity and
¢, is the real part of the permittivity of the air gap

oo La(€, gLs — €nipli — empLi) (C.16)

R e2plt —2¢pLiLls + ente Lt + L3 ’ '
LyLse o

", = , UL , ) C.17

R T2 L + @]+ L] (A0

An approximate expression is given by

(C.18)

Ly

tan &, = tan dm[l +€:"RL_} , (C.19)
2:
where
R, R,

a=In—+In—. t2

L n 7, + In . (C.20)
R3

L, =1In-—". C.21

2 n R, ( )
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Figure C.3: The gap correction calculated for various values of €j, where Ry, R, are the
radii of the inner conductor and sample respectively.

1,
Ly=1In—. .22
3 It R, (C )

Equation (C.18) breaks down when ¢/, 5 > L3/L,. An example is plotted in figure C.3 for
a 7 mm coaxial line.

C.2.2 Rectangular Waveguide Model

For the case of a rectangular guide of short dimension b with sample thickness d and long
dimension b, and sample thickness d; the E-plane gap correction is

/ 2 " ” "2
¢ = d(b((’mi{ — R (mR) + d((m/{ + (mR)) (C )3)
<R 90,2 Y "2 . 7] ’ "2 2 12 "2 ’ =
b (CmR - ‘ZEmR + CmR + l) - Zbd(ﬁmR — CnR + cm.R) + d (GmR + 6mR)
"
6// _ (lbéan (C )4)
cR ™ 12/ 12 5.1 12 : 2 ’ 172 20,12 12 : -
b (CmR - 26mR + € R + 1) - 2[)61(67711? — R + 6m}“t') + d (CmR + 6mR)
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C.3 Gap Correction for Magnetic Materials

C.3.1 Coaxial Line

For the calculation of the gap correction for the permeability a pure inductance mode
useful. We model the transmission line as
a series of inductors for the E-field gap

1 is

Lm = Lc + Lair s ) (CZ'

where ¢, m, and air denote corrected value. measured value, and air space. Therefore the
corrected value is

Lp = Lm - Lazr . ((‘26)

The inductance is the flux penetrating the circuit divided by the current flowing in the
circuit

@
L=+, (C27)
where
o:/1§~d§. (C.23)
Ampere’s law is
/H =1, (C.29)
which yields
_w
By=5—. (C.30)
Therefore | )
o= —ullnb/a, (C.31)
27
so |
L =—u'Inb/a . (C.32)
2r
Therefore we can write for the corrected permeability
i = for!n By/Ry —[In Ry/ Ry + In Ry/ R3] ’ (C.33)
ln R3/R2
" " ln(H4/Rl) (C34)

:un‘R = /’lTILRm )

Gap corrections are given in figures C'.4- C.7. The corrections for permeability in coaxial
line are much less than for permittivity. This is due to the fact the azimuthal magnetic
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Figure C.4: Corrected permeability and permittivity as a function of inner conductor gap

for a 7 mm sample. The gap around the outer conductor is assume to be zero. In this case

-

the uncorrected (measured) was up = 5. € = 5.
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v
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Figure C.5: Corrected permeability and permittivity as a function of inner conductor gap

for a 7 mm sample. The gap around the outer conductor is assume to be zero. In this case
the uncorrected (measured) was jify = 25. ¢, = 25.
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Figure C.6: Corrected permeability as a function of inner conductor gap for a 7 mm saniple.
The gap around the outer conductor is assume to be zero. In this case the uncorrected
(measured) was pp = 30.
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Figure C.7: Corrected permeability as a function of inner conductor gap for a 7. mm sample.
The gap around the outer conductor is assume to be zero. In this case the uncorrected
(measured) was pr = 200.
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field is continuous across the discontinuity, whereas the radial electric field is discontinuous
across the discontinuity.

(C.35)

C.3.2 Waveguide
E-plane Gaps

For magnetic materials in waveguide for the T E,, mode the E- plane gap is less severe than
the H-field gap. The corrections can be obtained using inductances in series. These are

, (b b—d
Hep = HmR (ﬁ) - (T) . (C36)
1 1" b -
Her = Hmn (3) : (C.37)

H-plane gaps

For the long width of the waveguide there is a discontinuity in the magnetic field for the
T E,, mode. The corrections can be obtained using inductances in parallel. We assume a
long waveguide width of b; and sample width d,

di(by (il — 1% = 1ar) + di(2 g + 1er))

!
lu’c = ) K ! 7 N I p 1’ *
RO U2 g = 2pl il + 1) — 200dy (phg = thar t+ W)+ di g + Ty
(C.38)
/‘”R — dlbl:u‘:’nR
‘ bl — 2pimp + pmr + 1) — 2bydy (P2 — Mg + iR) + (2 g+ 1ilg)
(C.39)

C.4 Gap Correction Formulas Derived Directly From

Maxwell’s Equations

Consider Maxwell’s equations in a coaxial line

VxE=-jwB. (C.40)

107




The radial electric field is discontinuous at the air gap interface, but the displacen,
ent

lnterfaCe
whereas B is discontinuous. Let us assume that there are no sources so that J=0 Th
en,

we can write eq (C.40) a.

vector D is continuous across the interface. Also H, is continuous across the

—

D ) -
Vx?:—]wuH. (C.a1)

If we now average eq (C.41) over the cross-sectional area of a coaxial line, we obtaip,

B
‘27r/ V x —dr = —ju)??r/ wHdr . (C.42)
a € a Tie

Continuity of the displacement field and tangential magnetic field and the fact that D, x
1/r and Hy o 1/r is imposed and integrations are performed. Comparing these resylys
to an effective medium equation, we obtain the same form as the previously developed
capacitor and inductance models for the corrected permittivity and permeability:

Ry R Ry R
IH,R—] _ In /7{—11 N In IR—7 N In F‘: | o
€n € €. €
poplln Ry/Ry) = plpln Ry/ Ry + [In Ry/ Ry + In Ry/ R3] . (C.44)

The analogous calculation can he performed for waveguide. These effective media formulas
are the Voigt approximation for the permeability (layers in series) and the Reuss approxi-
mation (layers in parallel) for the permittivity. The previously developed capacitor model
can be derived directly from Maxwell's equations.

From the perspective of Maxwell’s equation the limitations of the capacitor and induc-
tance models can be assessed. In order for these models to apply, we assume that

e The fundamental mode is the only propagating mode.

e The air gap and sample are azimuthally symmetric.

The air gap modifies the modal structure in the waveguide. The model assumption that
only a TEM mode is propagating in a coaxial line with an air gap around the sample
becomes less and less valid as the air gap increases in size. In fact, since the phase velocity
in the air gap region is much larger than the phase velocity in the sample, a distortion of
the wave can be expected. Longitudinal components of the electric field and therefore TM
modes will form as a result of an air gap if above cutoff. If the air gap or sample are not
azimuthally symmetric, H, is no longer the only nonzero magnetic field component. This
asymmetry will allow higher order 7'£ modes to propagate, when they are above cutoff.
When the assumption that the only propagating mode is the fundamental mode breaks
down, equations of the same form as eqs (C.43) and (C.44) hold with the logarithmic
constants replaced by more complicated expressions.
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C.5 Mitigation of Air Gap Effects

It is possible to minimize the effects of air gaps by‘ placing a conducting material in the air
gap. This material may be a conducting paint, 1nd1‘umtgalhum solder alloy, or a conducting
grease. The conducting material will change the line 1r.npefiance and line loss to a degree.
However, for relatively small gaps, the improvements in dielectric and magnetic property
measurements far outweigh any changes in line impedam;e. The 10'ss measurement, will be
influenced by this procedure. Application of the conducting material is an art.
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Appendix D

Causal Functions and Linear

Response

D.1 Introduction

We call a temporal function causal if it is 0 for all times less than 0. The goal of this section
is to review the basic mathematics used to describe causal systems.

In the analysis to follow we assume that an impulse is applied to a system at t = 0.
We can model a linear system by an input function f(t), an output function g(t), and an
impulse response function a(t). It is possible for either or both of f(t) and a(t) to be causal.
A more general approach would be to study nonlinear response with linear response as a
very special case. Linear response theory is usually valid when the underlying probability
density function can be approximated as an equilibrium distribution.

If both f(t) and a(t) are causal, the linear response is given by [45]

g(t) = /Ot f(T)a(t — 7)dr . . (D.1)

In this case, the output is a convolution over all past times. If only f(t) is causal then

g(t) = /Ow f(r)alt — 7)dr . (D.2)

We assume that a(t) = 0 for t < 0. The interpretation of the function f(¢) can be obtained
from the relationship

£(6) = /_z F(1)8(t - 7)dr . (D.3)
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If we identify the left side of eq (D.3) as the response function, then the impulse response
a(t) is delta function in the special case of no distortion. Of course, in real systems the
impulse response will be broader than a delta function.

Ve can define the step response function h(t) as

dh(t — 1)

o =a(t—rT1), (D.4)

and it is assumed that A(0) = 0. If we use the step response for g(t) in eq (D.1) we obtain
tdf(r

g(t) = J(O)R(6) + | %—)h(t ) (D.5)
o dr

D.2 Transfer Functions

If we send a signal exp(jwt) into a system, the response of the system is called the transfer
function and is denoted by S. The transfer function is defined as the Fourier transform of
the impulse response function

S(w) = /Oo a(t)e’'dt . (D.6)

— 0

As a consequence of the reality of a(t), S(—w) = S*(w). If F(w) is the Fourier transform
of f(t) we have, using the inverse Fourier transform

gt) = —P [ Flw)S(w)etdw | (D.7)
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D.3 Kramers-Kronig Relations

The real and imaginary components of any causal function are related by a dispersion rela-
tion. The complex permittivity is a causal function whose real and imaginary components
are related by the Hilbert transform [45]

do (D.8)

T

2 [ [0€1(0) = we!/(w)]

€(w) — €roc = —— PR

. 2 [€(0) — e (w)]
e Y e

The following summarizes some of the features of the Kramers-Kronig relations:

do . (D.9)

e The Hilbert transform relates real and imaginary components of a causal function.
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e Direct solution requires complete data over full spectrum for one component.

e Equation (D.8) can be thought of as an integral equation for the unknown component
when there are some data for the other component.

Another form of the dispersion relations is

' / W oW o0 €’(0)do

eh(w) — €lwo) = = P/_OO TR (D.10)
" " _ W — W 0 6:(0)‘19

e/ (w) — € (u)o)~——7r—P/_Oo o)) (D.11)

where P denotes principal value.
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